Midterm Exam II (Problems and Answers)

CSE4175: Introduction to Computer Networks Dept. of Computer Science and Engineering

1 2 Spring 2013 3 Student Number: 4 5 6

문제

합계

Total points 100 Problem 1: (15 points) Socket Programming Describe the TCP Socket identifier. Answer: the tuple (source IP address, source port number, destination IP address, destination port number)

Problem 2: (15 points) UDP

Describe the advantages that you can get from using UDP.

Answer:

Name:

Why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
 - o cf. TCP maintains connection state: rcv and sender buffers, congestion-control parameters, seq. and ACK numbers.
- small segment header
- no congestion control: UDP can travel as fast as desired

Problem 3: (15 points) TCP

Describe how the sequence number of a TCP segment is determined.

- Initial seq. number:
 - o In practice, both sides of a TCP connection randomly choose an initial seq.
- Sequence number of a segment:
 - o the byte-stream number of the first byte in the segment (n, n+1000, ...)

Problem 4: (15 points) RTT

Describe how to estimate RTT to be used for the timeout interval computation in the TCP congestion control.

Answer:

- Q: how to estimate RTT?
- □ SampleRTT: measured time from segment transmission until ACK receipt
 - o ignore retransmissions: see Karn's algorithm (later)
- □ SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

EstimatedRTT = $(1-\alpha)$ •EstimatedRTT + α •SampleRTT

- influence of past sample decreases exponentially fast EstimatedRTT (K+1)
 - = (1- α) •EstimatedRTT(K) + α•SampleRTT(K+1)
 - = $(1-\alpha)^{K+1}$ •SampleRTT(0) + $(1-\alpha)^{K}$ α •SampleRTT(1) •••• α •SampleRTT(K+1)

Problem 5: (20 points) TCP segment header

Describe the usages of the flag, ECE (ECN-Echo), of the header part of the TCP segment. **Answer:**

□ TCP Header

To support ECN, two new flags are added

o ECN-Echo (ECE) flag:

used by the <u>data receiver</u> to inform the data sender that a CE packet has been received (an IP packet with ECN field value of 11)

O Congestion Window Reduced (CWR) flag:

used by the <u>data sender</u> to inform the data receiver that the sender's congestion window has been reduced.

Problem 6: (20 points) ICMP

Describe the ICMP protocol.

Answer:

ICMP: Internet Control Message Protocol

	used by hosts, routers,			
	gateways to communicate	Type	Code	description
	network-level information	0	0	echo reply (pong)
	o error reporting: unreachable	3	0	dest. network unreachable
	host, network, port,	3	1	dest host unreachable
	protocol	3	2	dest protocol unreachable
		3	3	dest port unreachable
	o echo request/reply (used by	3	6	dest network unknown
	ping)	3	7	dest host unknown
	 discover identity of routers 	4	0	source quench (congestion
	network-layer "above" IP:			control - not used)
	o ICMP msgs carried in IP	8	0	echo request (ping)
	datagrams	9	0	router advertisement
	ICMP message: type, code plus	10	0	router solicitation
_	first 8 bytes of IP datagram	11	0	TTL expired
	causing error	12	0	bad IP header